黄瓜视频

学术报告
您现在的位置: 黄瓜视频 > 科学研究 > 学术报告 > 正文

20260117 高振 Reduced order models for parameterized PDEs based on dynamic mode decomposition

发布时间:2026-01-15 15:53    浏览次数:    来源:

报告题目: Reduced order models for parameterized PDEs based on dynamic mode decomposition

报告人:高振 教授 (中国海洋大学)

报告时间:2026年1月17日 周六 15:00-16:00

报告地点:数学院425

摘要: Accurately constructing a reduced order model (ROM) of parameterized partial differential equations (PDEs) has always been the challenging problem in engineering and applied sciences. Dynamic mode decomposition (DMD) is a popular and efficient data-driven method for ROM, however, it is proposed for the model order reduction of time-dependent problems that it is invalid for the parameterized problems. In this talk, ROMs are proposed based on k-nearest neighborhood (KNN) and DMD, namely, KNN-DMD. We apply the proposed method to various parameterized PDEs. The results demonstrate the applicability and efficiency of the proposed KNN-DMD as a real-time ROM for parameterized PDEs. Furthermore, KNN-DMD shows better predictive ability than the POD-based ROMs at the outside of the training time region.

报告人简介:高振教授现任中国海洋大学数学科学学院副院长、博士生导师、山东省“泰山学者”青年专家、山东省高校优秀青年创新团队带头人,主要从事随机计算、计算流体力学等的研究工作;主持国家重点研发计划、国家重大科技专项、国家自然科学基金等20 余项课题。


版权所有©黄瓜视频-黄瓜视频资源导航     通讯地址:湖南省长沙市岳麓区麓山南路麓山门     邮编:410082     Email:[email protected]
域名备案信息:[www.hgshipin.net,www.hnu.cn/湘ICP备05000239号]      [hnu.cn 湘教QS3-200503-000481 hgshipin.net  湘教QS4-201312-010059]